Skip to main content

The breakthrough makes it possible to create sustaining chemical compounds for nanotechnology. 



"Researchers have detailed the structure and function of the enzyme styrene oxide isomerase, a tool that enables green chemistry by facilitating the biological equivalent of the Meinwald reaction. This enzyme’s ability to produce specific products with high efficiency and stereospecificity holds significant potential for the chemical and pharmaceutical industries, promising more sustainable and environmentally friendly processes. (Artist’s concept.) Credit: SciTechDaily.com." (ScitechDaily, Bionanomachine Breakthrough: A Master Key for Sustainable Chemistry)


Nanotechnology makes it possible to create new types of treatments. In medical use, long and complex molecules make sure. That medicine is released only at the right point. When an enzyme touches the medicine molecule it cuts chemical compounds. 

And that activates the medicine. The medicine molecules can equipped with the transportation molecule or enzyme that makes the medicine travel into the right cells. This molecule can be the nutrient that the targeted cells or bacteria eat. 

Nanomachines are perfect tools for things like medical treatment. The main problem in those things is how to control nanomachines. The nanomachines are complex molecules that act like machines. The complex molecules require mass production. 

Nanomachines can used in medical work. The problem with nanotechnology is how to make sustaining chemical compounds. The second problem is how to make nanomachines select the right cells. And the third problem is how to control those nanomachines.? 

And the second problem is how to destroy those molecules at the right moment. If we think of the wheel-looking molecular machines that are above the text, we must understand that the size of those machines is very small. The system can use acoustic whirls to press ions and anions together.

Nano-wheels can destroy bacteria in three ways. The nanorobot can slip into bacteria, and then it starts to rotate very fast. That thing destroys the bacteria's internal structures. The nanorobot can start to rotate very fast and make nanobubbles that can destroy bacteria. 

The fast-rotating nanomachine can form a so-called acoustic bubble. When that bubble starts to oscillate. It forms a low-pressure area around its shell. That causes liquid vaporization. And that forms new bubbles. Or the acoustic system can detonate the nanomachine, which makes holes in the cell's shell. 

The wheel-shaped nanomachines can used to create nano-size bubbles. The system just makes those wheels rotate so fast that they form supercavitation. Those fast-rotating wheels form nano-size bubbles in liquids. Those bubbles can used to block blood vessels. They can capture viruses or bacteria. And they can used to fill bacteria. 

Nano-size bubbles can used in medical solutions. Nanobubbles can close the blood vessels. Researchers can use them them destroy non-wanted cells. The wheel-shaped nanomachines can also create bubbles in the water, and they can destroy bacteria from dirty water, When those machines are not needed anymore, the acoustic system just makes them resonate, and that thing destroys the nanomachine. 


https://scitechdaily.com/bionanomachine-breakthrough-a-master-key-for-sustainable-chemistry/


https://en.wikipedia.org/wiki/Supercavitation

Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac