Skip to main content

Stopping problem with Turing's machine

Image:Pinterst

The problem with binary computers or Turing's machines is that they must stop before they start their next mission. That is one of the reasons why the development of quantum computers started. In quantum computer is enough, when one of its layers stopped for taking the mission or code in it. There is of course problem that the inputting data to the quantum processor fail. 

Because there is the possibility the support system tries to download data to the busy layer. The stopping problem is the thing that makes the system slow. The problem is that we cannot see outside is Turing's machine ready for the next program. 

If the machine is running and handling some other program, that thing will turn Turing's machine out of control. It's like trying to put another tape in the movie projector which uses film while it's running. The film will be lost. And if that thing happens in the computer every data is lost. And if the calculation is lasting weeks. That thing can cause loss of invaluable information. So how to solve the stopping problem?

In this version, the CPU can automatically tell the system it's ready for the next algorithm. In that case, the end and beginning of the code-line are equipping with the mark. That mark in the code tells that the code is beginning and when it's ending. When the CPU will see the algorithm's beginning mark. It's telling other processors that it's busy. That makes it easier to control the system. Because other processors must not all time ask if the processors are busy. 


This means that the data would transfer to other processors. And when the end of the program is seen. This means that the CPU will tell that it's ready for the next mission. 


One of the versions for the solution is that the system uses the control processor. That means the control or auxiliary processor keeps the book when the microprocessor is taken the data under processing. And when that data is coming out the processor is free. But then we might think that the processor will use the preprocessed information. In this version, the system uses the auxiliary processor for marking the beginning and the last point of the data flow.

When the data is downloaded to the CPU the processor will get the mark that it can start its run. And if there is some kind of series. There are orders of how many times the program has access to run through the microprocessor. And that means when the program is run let's say about 5000 times, it will get an end mark. In that case, the system has promised the program 5000 drives. When the end mark of the program comes that processor can automatically report to the control processor that the system is ready for the next program or code line. 

The answer is that the multiprocessor model of Turing's machine must not stop entirely. If it uses multiple microprocessors it's enough that only the microchip that takes the algorithm is stopped. The system would partially be stopped because there is always be a free microprocessor. That is ready to receive the data. 

But the most powerful thing in binary computers is to use the so-called "non-linear stopping method". In this version, the system uses multiple microprocessors. And the data would be driven to the free microchip. The non-linearly means that while another processor is working the other will be ready for the mission. The idea is that some of the processors are working with the algorithms. 


()https://kimmoswritings.blogspot.com/


Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac