Skip to main content

Pulsed plasma rockets are an interesting solution for Mars missions.


"Howe Industries is developing a Pulsed Plasma Rocket (PPR) capable of producing 100,000 N of thrust with a specific impulse of 5,000 seconds, promising to revolutionize space travel by enabling faster and safer manned missions to Mars and beyond. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Mars in a Flash: How Pulsed Plasma Rockets Are Revolutionizing Space Travel)


The new pulsed plasma rockets (PPR) with 100,000-newton thrust and a specific impulse of 5000 seconds are the tools that can transport humans to Mars. In a very short time. If we compare that time with chemical rockets. The pulsed plasma systems can use fusion, fission, or antimatter to create high-energy plasma that pushes the rocket forward. The light antimatter system uses the antimatter or positron injection into the water or hydrogen. 

The system that raises the propellant's temperature can also be radio waves, microwaves, or lasers. In a radio wave-based system. Plus and minus radiowaves impact the propellant. And form an electric arc. In the microwave-based system, the engine heats propellant using microwaves, and then a magnetic field pulls that heated plasma backward. It's laser plasma engines. The system uses lasers to heat and ionize propellants. 


Simplified image of the Pulsed Plasma Rocket (PPR) system. Credit: Brianna Clements, edited (ScitechDaily, Mars in a Flash: How Pulsed Plasma Rockets Are Revolutionizing Space Travel)



It doesn't matter how the heating systems or ionizers get their energy. And that means the pulsed plasma engines can operate using solar power. Nuclear rockets always need long wings to decrease the reactor's temperature. So the system may use solar power for at least part of the mission time. 

Small-size pulsed plasma engines that operate near Earth can get the power remotely from high-power radio transmitters or laser satellites. That kind of system can transport humans between Earth's orbiter and the Moon. That means the moon shuttle can also use pulsed plasma. And we can say that the moon shuttle must not have the same capacity as Marscraft. 

The idea of those (systems is simple. A rocket engine raises the material's temperature to a very high level, and then that expansion pushes the craft forward. One of the problems with pulsed plasma engines is how to control plasma. If high-energy plasma touches the plasma channel wall, it burns that will immediately. 


https://scitechdaily.com/mars-in-a-flash-how-pulsed-plasma-rockets-are-revolutionizing-space-travel/


https://en.wikipedia.org/wiki/Specific_impulse

Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac