Skip to main content

Metamaterials can change their properties in an electric- or electro-optical field.

 

"Researchers have created a novel metamaterial that can dynamically tune its shape and properties in real-time, offering unprecedented adaptability for applications in robotics and smart materials. This development bridges the gap between current materials and the adaptability seen in nature, paving the way for the future of adaptive technologies. Credit: UNIST" (ScitechDaily, Metamaterial Magic: Scientists Develop New Material That Can Dynamically Tune Its Shape and Mechanical Properties in Real-Time)

Metamaterials can change their properties in an electric- or electro-optical field.  An electro-optical activator can also be an IR state, which means. The metamorphosis in the material can thermally activate. 

AI is the ultimate tool for metamaterial research. Metamaterials are nanotechnical- or quantum technical tools that can change their properties, like reflection or state from solid to liquid when the electric or optical effect hits that material. The metamaterial can crumple when electric or optical stress impacts its atoms. The temperature can also change the state of the material. 


"The team has developed a world-leading MWP chip capable of performing ultrafast analog electronic signal processing and computation using optics. Credit: City University of Hong Kong." (ScitechDaily, 1,000x Faster: Ultrafast Photonics Chip Reshapes Signal Processing)

And that thing can make it possible to make new stealth materials or robots that are like droplets when they travel to a target. And then those robots can get solid state. They can used in many ways. Those robots can close blood vessels that transport blood to tumors. Or they can close leaks in oil or gas tubes. 

The new materials can used to cover qubits in new quantum computers. Portable quantum computers require solid-state qubits that can operate at room temperature. This kind of system requires the ultimate AI that can control the qubit and outside effects. The ability to react to outside effects like changes in radiation level requires. The material can start counter-actions right when the system notices changes in radiation stress. 


"Scientists at the DOE’s Brookhaven National Laboratory have discovered that coating tantalum with magnesium significantly enhances its properties as a superconducting material for quantum computing. This coating prevents oxidation, increases purity, and improves the superconducting transition temperature of tantalum, offering promising advancements for the development of qubits and the future of quantum computing." (ScitechDaily, Breaking Barriers in Quantum Research: Magnesium-Coated Tantalum Unveiled)


Quantum computers can operate remotely from deep underground shelters. Those systems use the internet to communicate with their users. 


The optical neural network can revolutionize the AI. The optical neural network doesn't raise the temperature in the system. The optical neural network can also operate to control with superconducting quantum computers. And that thing makes those systems interesting. The great thing about optical neural networks is that the system can change its mode between binary and quantum modes. 

In that case, the system can have thousands of optical processors, that can turn into a virtual quantum computer. Or maybe, they can create superpositions and entanglements between standing photons in those microchips. However, the optical neural network can be a more powerful tool than nobody predicted. 

"Recent research has made significant strides in the development of optical neural networks, presenting a sustainable alternative to the energy and resource-intensive models currently in use. By leveraging light propagation through multimode fibers and a minimal number of programmable parameters, researchers have achieved comparable accuracy to traditional digital systems with significantly reduced memory and energy requirements. This innovative approach offers a promising pathway toward energy-efficient and highly efficient artificial intelligence hardware solutions." (ScitechDaily, Not Science Fiction: How Optical Neural Networks Are Revolutionizing AI)


The optical neural network can act as the sensor itself. If something closes to the metamaterial layer, that neural network sees energy change in its structures. Laser systems like laser rays, that travel in glass fiber can act as a synthetic sense of touch. When something touches glass fiber that is between certain microchips the system sees that the trajectory of that laser ray changes. 

Those microchips can send the information about that thing to the CPU (Central Processing Unit), which decides what the system must do. And the CPU can also be the neural network of microchips. 

When something touches that optical network it sends information about that touch to the microchips that control the metamaterial and its properties. Because those microchips operate with that metamaterial are sensors themselves, they can react very fast. When the physical environment changes, that neural network changes electric or physical conditions in the metamaterial. 


https://scitechdaily.com/1000x-faster-ultrafast-photonics-chip-reshapes-signal-processing/


https://scitechdaily.com/breaking-barriers-in-quantum-research-magnesium-coated-tantalum-unveiled/


https://scitechdaily.com/metamaterial-magic-scientists-develop-new-material-that-can-dynamically-tune-its-shape-and-mechanical-properties-in-real-time/


https://scitechdaily.com/not-science-fiction-how-optical-neural-networks-are-revolutionizing-ai/


Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac