Skip to main content

The new DNA toolbox can make everything without CRISPR.


The new DNA toolbox uses bacteria to create and multiply the DNA for genome research and genetic engineering. Researchers can use artificial DNA to fix genetic errors and make new types of cells for things like energy production. The ability to interconnect DNA from different sources over species borders opens a world where only imagination is limited. 

The problem is that the DNA must be done in large numbers so that the system can make enough artificial cells for the DNA transplant. The DNA sequence must transfer into artificial DNA with a very high accuracy. Then that artificial DNA must be injected into the cell, where the original DNA is removed, because that cell must create the artificial DNA. 

The problem with the artificial DNA is how to multiply it. If that problem is solved, the system can create new artificial DNA and artificial species. The AI-based solutions can connect images from different species, and then the system can search the DNA sequences. They are similar to animals that have spots. 



The hypothesis goes like this. Similar genomes are controlling the spots of the leopard and butterflies. And if all animals that have spots have similar sequences in their DNA. That thing can offer a conclusion that similar DNA sequences control all spots in nature. The problem is how to find those sequences from the other DNA sequences. And the AI can answer. AI can make the system possible to find the point in the DNA that controls certain things. 

When the next generation of doctors gives DNA therapy they must just find the right DNA point.  Then doctors cut the DNA. Then the system connects the new sequence to that place.  The problem is that the DNA manipulation must done very accurately.  The DNA molecule is very long. And the system must find the precise in the right place. 

This kind of system can use the artificial DNA as the chemical qubit. The system will load data to the DNA. Then the system can read that DNA from multiple points. The system can be interesting, but maybe slower than the electric qubits. This kind of electrochemical quantum computer can be slow but it is less error-sensitive than the electromagnetic quantum computer. 

The thing, how the AI makes DNA analysis very effective is that the AI can multiply the DNA in PCR (Polymerase Chain Reaction) and deliver that multiplied DNA to the different analysis points. Then the AI can order those systems to begin the DNA analysis at different, individual points of the DNA. The AI acts like a virtual quantum computer. 

When the AI starts to read the DNA in multiple workstations. Each of those systems starts the process at different points. That increases the power of the system. If there are a thousand workstations. And they read the DNA chain in an identical sequence. That leaves 3000 000 base pairs for each workstation. The DNA that the system uses can be separated, but if those bites are identical. The system can use this method where each workstation begins at individual points to make the DNA analysis more powerful than we can ever imagine. 


https://phys.org/news/2024-02-toolbox-genomes-crispr.html


https://techandsciencepost.com/news/biology/new-toolbox-allows-engineering-of-genomes-without-crispr/


Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac