Skip to main content

AI and quantum computers boost material research.



"By replacing the atoms on one side of the nanosheet with a different element, the team has realized a nanosheet that can spontaneously roll into a scroll when detached from its substrate. Credit: Tokyo Metropolitan University" (ScitechDaily, The Next Wave of Nanomaterials: Precision-Engineered Nanoscrolls)


The new tool for metamaterials is the metamaterial called nano-scrolls. Those nano-scrolls can used to cover layers. They can used as nano-size ion cannons. Ion cannons can create nano-size origami over layers. 

Nano-size ion cannons can used shoot ions over things like graphene layers. That thing can be used for making nano-scale components like atom-size transistors and resistors over the graphene layer. That thing makes the microscopic microprocessors possible. 

The new metamaterials are making the impossible possible. The new abilities of the quantum scale design using AI-boosted quantum computers offer new types of materials. In some models, the quantum-size designs make it possible to design the "UFO materials" or structure layers with integrated quantum computers. 

The new quantum semiconductor is an interesting tool. That semiconductor makes the new types of small- and compact-size quantum computers possible. If those quantum semiconductors mount on the material's layer. If that connection is successful, it makes it possible to connect metal structures with quantum computers. 

In those imaginational materials the shell of those materials that might look like regular metals acts as a quantum computer. Some electrons or protons trap photons used to pump data to the quantum entanglements. Those new intelligent materials can probably fix their damages or even turn invisible to the human eye. 



Fast-rotating ion bubbles around objects can act as a protective field.  When those ions hit an object they act like ion cannons. 


The most interesting quantum materials are the layers where high-energy particles whirl above the layer. That whirl can cause time dilation. But in other models. That whirl simply breaks the incoming asteroids and other ammunition. The ion whirl between craft and space acts like an ion cannon. 

It breaks all incoming ammunition. In the most futuristic versions, the structure is two layers of electrons, and then there is a positron, anti-electron layer between those layers. Electrons anchor those positrons into the right position, and if something tries to come through that bubble the positrons destroy the object. 

"A new experimental method developed by researchers enables the identification of topological properties in materials without relying on mathematical models, simplifying research and expanding the potential applications of topology in various fields. Credit: SciTechDaily.com" (ScitechDaily, Revolutionizing Physics With a Game-Changing Topological Approach)


In some versions, the quantum material simply traps photons in it. Then it conducts it away from the observer. In more advanced versions the system uses photon polarization where the shell is hovering electrons or some other quantum cages catch the photons. And then that system must conduct those photons in the other direction. If there is no reflection or reflection cannot reach the observer the system is invisible to the observer. 

This thing makes chiral attributes in materials interesting. In 3D structures, chiral molecules cannot fully cover each other. This ability makes it possible to create structures where photons and electrons jump back and forth. This movement decreases the particle's energy level. This thing can used in the new acoustic and photoacoustic materials. In some versions, there are em fields in material that pull energy out from impacting them. fields. 

The new research introduces that there is an interaction between electromagnetic fields, or more accurately light can interact with EM fields. The photon can pull energy to electrons. And we know things like laser-accelerated electrons. This new research can make things like antigravity possible. 

In the virtual version, the system just pushes other particles backward. That thing forms a short moment of false vacuum. Then the EM field and pressure fill that vacuum between the wave and the bottom of the object. 

The idea of hypothetic antigravity is that the system can create some kind of EM radiation that cuts the interaction between the gravity field and the hovering object. Theoretically, that requires only the system that creates so dense photon waves that it can turn gravity waves that travel between hovering objects and gravity center away. 


https://www.graphene-info.com/graphene-nano-origami-could-enable-tiny-microchips


https://scitechdaily.com/beyond-classical-physics-scientists-discover-new-state-of-matter-with-chiral-properties/


https://scitechdaily.com/challenging-conventional-understanding-scientists-discover-groundbreaking-connection-between-light-and-magnetism/


https://scitechdaily.com/engineering-the-impossible-how-metamaterials-and-ai-redefine-material-science/


https://scitechdaily.com/the-next-wave-of-nanomaterials-precision-engineered-nanoscrolls/


https://scitechdaily.com/redefining-quantum-possibilities-scientists-develop-diamond-lithium-niobate-chip-with-92-efficiency/


https://scitechdaily.com/scientists-create-worlds-first-quantum-semiconductor/


https://scitechdaily.com/redefining-optical-limits-columbia-engineers-uncover-enhanced-nonlinear-properties-in-2d-materials/


https://scitechdaily.com/revolutionizing-physics-with-a-game-changing-topological-approach/



https://spectrum.ieee.org/graphene-semiconductor



https://www.theguardian.com/business/2023/dec/19/graphene-will-change-the-world-the-boss-using-the-supermaterial-in-the-global-microchip-war

Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac