Skip to main content

Researchers can use information about the "diamond rain" on icy planets to form industrial diamonds,

   Researchers can use information about the "diamond rain" on icy planets to form industrial diamonds,


"The graphic shows the diamond rain inside the planet, which consists of diamonds sinking through the surrounding ice. Pressure and temperature continuously increase on the way deeper inside the planet. Even in extremely hot regions, the ice remains due to the extremely high pressure. Credit: European XFEL / Tobias Wüstefeld" (ScitechDaily.com, “Diamond Rain” on Icy Planets: Unlocking Magnetic Field Mysteries)


"A new study reveals that “diamond rain” on icy planets like Neptune and Uranus forms under less extreme conditions than previously believed. This phenomenon influences the planets’ internal dynamics and magnetic fields and could also occur on smaller exoplanets." (ScitechDaily.com/“Diamond Rain” on Icy Planets: Unlocking Magnetic Field Mysteries)

The diamond rain on icy planets can tell about the magnetic field. The researchers can use that information about the formation of diamond rain on Uranus and Neptune about the production of small-size diamonds, that are useful as antennas in nanotechnology and new types of optical microchips.  

The new information tells us that diamonds form because of the combination of pressure, gravity, and magnetic field. And that thing means it's possible. That researchers can form those conditions in the laboratory. The key element of diamond rain is that it forms in lower pressure or upper atmosphere than previously thought. 

"A new experiment suggests that this exotic precipitation forms at even lower pressures and temperatures than previously thought and could influence the unusual magnetic fields of Neptune and Uranus."  (ScitechDaily.com/“Diamond Rain” on Icy Planets: Unlocking Magnetic Field Mysteries)

It's possible. That researchers can copy conditions. That is on the layer where diamonds form in the laboratory chamber. If that thing is possible, the researchers can create a new way to make artificial diamonds. Previously that technology required high pressure and temperature. And that thing meant that the diamond production required high-pressure chambers.

But if "cold" technology is possible, that thing can make a new way to create industrial diamonds. Maybe the next-generation chamber for the artificial diamond is the "X-shape" wind tunnels where methane or ammonia gases flow crossing and then those molecule impacts will reduce carbon. And maybe those carbon atoms can start to collect carbon atoms from the gas flow. That involves hydrocarbon. 

It's also possible that the magnetic or laser systems can press methane or some other hydrocarbon atoms together. And then that thing removes hydrogen. Then the gas flow with those proto-diamonds starts to reduce carbon from other hydrocarbon molecules. That thing starts the growth of the carbon crystals. 

The nanocrystals can used as a stylus for scanning tunneling microscopes. The atom can hover between the layer and stylus, whose tip is the size of one carbon atom. That system can scan layers with extremely high accuracy. 

The form of those raining diamonds is interesting because they are suitable for nanotechnology. In nanotechnical antennas diamonds conduct electromagnetic radiation or pressure waves in photoacoustic systems. In photoacoustic systems, the laser rays make oscillations in the carbon atoms. And that oscillation is visible as the sound waves. That system can transmit data to the system, or it can move small particles on the layer. 


https://scitechdaily.com/diamond-rain-on-icy-planets-unlocking-magnetic-field-mysteries/


https://en.wikipedia.org/wiki/Scanning_tunneling_microscope


https://learningmachines9.wordpress.com/researchers-can-use-information-about-the-diamond-rain-on-icy-planets-to-form-industrial-diamonds/


Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac