Skip to main content

Westinghouse Corporation's new "eVinci" microreactors don't need water.

   Westinghouse Corporation's new "eVinci" microreactors don't need water. 


Microreactors or micro nuclear reactors are the next-generation tools for power supply. Many of those systems are planned to be portable, and portable nuclear reactors called "PoNu" can offer non-centralized power supply solutions for temporary or static use. The operators can connect microreactors into series or in lines. And that makes those small nuclear power plants give very high power. 

Portable nuclear reactors can give very flexible solutions for many things. In some models, the portable nuclear reactor can give electricity to the truck that transports it to a ship or aircraft. Then that reactor can connect to the ship's or aircraft's electric systems. And it can give power to that. The same system can deliver energy to the area where it is transported. 





TRISO (TRi-structural ISOtropic particle fuel). fuel pellets cannot melt even at high temperatures. That makes those fuel pellets a very useful and safe way to create nuclear power. Shutting down TRISO reactors is easy. In some versions, there are two or more different sizes of pellets. And when some anomaly in operations happens, the hatch will open at the bottom of the reactor. There is a net that lets smaller pellets travel through it. That separates the fuel into 2 or more different chambers. 








The water supply has been a critical part of the use of microreactors in ground vehicles, ships, and aircraft. Normal nuclear reactors require water for cooling systems and power transfer. The nuclear reactor transfers its thermal energy to water that rotates turbines and generators. But another way to take electric power from reactors is to benefit the beta radiation (electrons) that the reactor sends. 

Westinghouse's "eVinci" reactor uses some kind of cooling pipes that transport thermal energy out from the reactor.  The liquid gas or even fast-moving air or ion flow that travels through the tubes that travel through fissile material can increase the cooling power. That is a suitable solution if the tubes themselves cannot stop the temperature rise in that reactor. 

Another thing is how to replace water in the cooling system. One of the systems that can make this thing is the gas-flow, laser- or ion-based thermal pump that sends radiation through the nuclear element or fissile material. That kind of thermal pump transports thermal energy out of the reactor. In that version, the aimed pressure impulses, acoustic beams, or laser and ion beams that travel through the hole in the middle of the reactor can transport thermal energy out from it. The laser ray can also ionize air and make the eruption channel for electrons. 



And that could explain the mystery rays below some UAPs. 


Some eyewitnesses report. That they saw some kind of laser ray. Below those things. There is a theory that the mystery beam is the thermal pump that should keep the reactor's temperature low. We all know that microreactors also can used in rockets. And those kinds of systems are powerful tools for nuclear thermal rockets like NERVA (Nuclear Engine for Rocket Vehicle Application) systems. 

But laser beam accelerated electrons and ions will give those systems higher speed. The photon-accelerated ions and electrons have very high speed, and the small nuclear reactor can also operate as the source for helium ions (Alpha particles) and electrons (Beta particles). The speed of those particles that travel out from the engine can rise even closer to the speed of light. 


https://www.energy.gov/ne/articles/triso-particles-most-robust-nuclear-fuel-earth

https://interestingengineering.com/innovation/microreactor-no-water-for-operation

https://www.msn.com/en-us/weather/topstories/evince-microreactor-boasts-8-years-of-nuclear-power-without-using-water/ar-AA1m3Z92


https://www.westinghousenuclear.com/energy-systems/evinci-microreactor

https://en.wikipedia.org/wiki/NERVA

Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac