Skip to main content

Ultrasound systems can also revolutionize medical work.

 Ultrasound systems can also revolutionize medical work. 

The ultrasound helmet can observe blood flow in the brain while a person operates in real-world situations. That kind of system can create images and help predict possible blood flow anomalies in the brain. If one system has multiple uses that makes it more effective. 

3D scanning ultrasound sonar systems are tools. That can create 3D images of the inner organs. A functional ultrasound system (fUS) is used to operate as the BMI (Brain Machine Interface) sensor system. As I wrote in the last text.  The use of ultrasound-based systems in the BMI cuts unnecessary data away from the control system. 

If the receiving system must filter no-relevant or unnecessary data away from data flow it requires a hard operating system. That makes the system The EEG-based systems input too much data to a computer, and too accurate data makes things like welding robots slow, and the fact is, that all robots must not have the ability to work as surgeons. 

***********************************************************



ETH Zurich researchers have shown for the first time that microvehicles can be steered through blood vessels in the brains of mice using ultrasound. They hope that this will eventually lead to treatments capable of delivering drugs with pinpoint precision.

*A technology developed at ETH Zurich over the past few years for controlling microvehicles using ultrasound also works in the brain, as researchers have now been able to show.

*These microvehicles are gas bubbles, which are harmless and dissolve once their job is done.

*In the future, these microvehicles could be equipped with medications and deliver them to specific points in the brain. This may increase the efficacy of the drugs and reduce their side effects.

(ScitechDaily.com/Brainwave Riders: How Ultrasound Microbubbles Could Change Medicine)



"Scientists have developed a novel family of polymers that effectively kills bacteria, including E. coli and MRSA, without causing antibiotic resistance. This breakthrough, involving multidisciplinary collaboration, marks a significant step in addressing the public health threat posed by superbugs. Credit: SciTechDaily.com" (ScitechDaily.com/Bacteria-Killing Marvel: Scientists Develop Polymers That Defeat Antibiotic-Resistant Superbugs) The problem is how to get those polymers near bacteria. And ultrasounds can be one of the solutions. 


*********************************************************


But the functional ultrasound system (fUS) can also operate as the controller that drives medicals, like new nanotechnical polymers and nanobubbles to the right points. The new nanopolymers are like springs that go inside bacteria. And then the bacteria's enzymes launch that spring, which destroys the bacteria cells by cutting their protein shells. The system can drive those polymers to the right point using sound impulses.

Another tool that is mentioned is the so-called nano-and microbubbles. Researchers at the ETH Zurich, the University of Zurich, and the University Hospital Zurich have researched ultrasound-controlled micro-size gas bubbles to detect anomalies in the brain. Ultrasound systems are more effective tools than magnetic fields because those systems don't need magnetic material for interactions. 

Those micrometer-sized bubbles can brought to the body from outside or the system can create them in the blood vessels. The system can adjust the size of those bubbles and that helps the use of them to open blood vessels. The nanobubbles can also destroy bacteria. In some visions, the genetically engineered bacteria carry a small ultrasound system and it can create those bubbles using fast spinning fibers. The "local" ultrasound system can control those bubbles with extremely high accuracy. 

 In the future, the ultrasound system can create those bubbles by shaking blood cells or some polymers that are in blood vessels.  Nanobubbles can used to close blood vessels from the tumor. The system can also make nanobubbles by using the low pressure that impacting soundwaves are making. Those soundwaves can fill bacteria with nanobubbles, which makes them unable to operate. 


https://scitechdaily.com/bacteria-killing-marvel-scientists-develop-polymers-that-defeat-antibiotic-resistant-superbugs/


https://scitechdaily.com/brainwave-riders-how-ultrasound-microbubbles-could-change-medicine/


https://scitechdaily.com/brainwave-riders-how-ultrasound-microbubbles-could-change-medicine/

Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac