Skip to main content

The AI and computer games




Computer games are offering a good platform for simulating many types of situations where  AI can involve. The game platform might contain man-controlled characters. And AI-controlled characters. 

In those cases, the system and programmers are testing the interaction between physical players and artificial intelligence. The conditions in the game area are not always similar to nature. The communication between physical players and AI is always problematic.

And the reason for that is that AI cannot flex. In the hierarchical system, those kinds of things are causing problems. The reason for that is if the AI must take commands from all human players. That thing makes those characters vulnerable. 

The games which have limited 2D gaming areas like chess are the cases where the AI is always winning humans. The reason for that is that AI ever loses focus. The rules in chess are strict. And they are easy to program for AI. Chess is a solo game where two players are playing against each other. 

But in the games where the key element is teamwork, the AI has problems. It must not react to all words that are said during communication. Otherwise, the AI must react to orders but it must separate orders from the other discussions. The 3D teamwork-based action games can use as the platforms for creating algorithms that make it possible that the robot is working as part of the team.

In the cases that artificial intelligence is operating against a human player, there are no problems. But when artificial intelligence is operating as a part of a team there is a problem. When people are communicating with each other there is always communication. That doesn't mean that the communication includes commands. 

But games are far away from real-life situations where robots and humans are acting together. In games, there is no extra noise. There is no real stress. And all things that players are saying are said clear. In real life dangers like military, high-risk law enforcement, or rescue missions. The speech of people can be unclear. 

And the things like noise and electronic countermeasures can cause problems with communication. Electronic countermeasures are the thing that makes remote control unable to operate at the war zone. So for avoiding the electronic countermeasures. The robots must operate independently. 

The microphones can use to give commands to robots. Giving voice commands is not more difficult than giving commands to humans. The system will transmit speech to the "speech to text" application. Then that text is transmitted to the computer. In this version of the command system, the keyboard is replaced by the "speech to text" application.

The problem with this kind of system is that the keyboard is more accurate than some "speech to text" applications. The computer systems require precisely given commands. And if the person uses dialect or has some other problems with vocabulary the system has difficulties understanding the commands. 

In visions, the commands for robots are given by using the coded radios. This technology makes the operations safer. But that requires clear commands. In this writing, the focus is on independent operating robots. So the operators must give commands to robots similar way as they command other humans. 

Theoretically, those kinds of systems are already in use. But in real life, people are not talking like they should. So people are not compatible with computer systems.  

And the other thing is that independently operating artificial intelligence requires complicated programming code. The simplest solution is to outsource the data handling process to central computers. 

And the robot can interact with supercomputers over the internet. But in the war zone, electronic countermeasures can cut that communication channel. So the independently operating robot requires the internal supercomputer for driving complicated code. Making a compact-size man-looking robot that has internal powerful data processing unit is complicated. And today those systems are at least partially at the theoretical level. 

That is the reason why there are projects. Which goal is to make miniaturized microcircuits and atomic-sized quantum computers. Those atomic quantum computers are the atomic clouds where atoms are acting as qubits. And miniaturized electronics are the ports that are making ports between binary and quantum systems. 

The quantum system is making the brains of the robot. And the binary system is moving its joints. In those systems, every joint in the skeleton of the robot has its independent microchip. Maybe someday those systems are real and their size is small enough that they can install in the man-size robot. But those times are far ahead in the future. 

https://thoughtandmachines.blogspot.com/

Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac