Skip to main content

How are the algorithms advancing?

   




How are the algorithms advancing?


The thing that limits the power of the algorithms is the infrastructure. If we want to make artificial intelligence that operates in large areas. That thing requires powerful hardware. If we want to make a robot car that can operate in so-called natural environmental infrastructure. That requires more complicated artificial intelligence algorithms than people even believe. 

If we want to put a man-shaped robot to sit in that robot car and put it to go shopping for us, that requires even more complicated and heavy algorithms than the car, which operates in the highway environment where are strict orders and everybody follows them. When a robot walks on the streets it requires so-called fuzzy logic because there is the possibility that it faces the person who is not following orders. 

If somebody will not care for the robot or tries to the robot. That machine is needed to make the protocol. The robot can meet things like children, who would not notice it. And for those cases, the robot requires algorithms, what to do. 

The special cases or special situations are the most complicated for programmers. Maybe any person would not face the robberies in their lifetime, but what the robot must do if it faces a violent situation? It can send the image and data to police but should the robot act against violent people? And what kind of force it has the right to use? 


In the case of robot cars, there is the possible use of traffic laws as the basis for the algorithm. Or in the limited areas operating robots is possible to create the protocols for most of the cases. 


There is the possibility to link a large number of computers and sensors to a large entirety. In that network, the static and moving systems are connected to the neural network. 

Sensing entirety is an interconnecting network of robots with cameras and other static systems. In that network, all members of it are cooperating and share the data. And that makes its entirety flexible. 

That means that vehicles can cooperate and they can get data from the traffic control cameras and computers. If all robot vehicles and robots are equipped with RFID-system. The radar can locate every each of them. And the data can connect to the entirety. This makes the system more flexible and powerful than ever before. 


Virtual quantum computers are the potential systems while waiting for real commercial quantum computers. 


Outsourcing computing is one of the answers to the problems of computer power. And virtual quantum computers are making regular binary computers faster and more powerful than ever before. In that case, the program is cut into pieces. And those pieces send to the data handling units. Because in virtual quantum computers, all systems are handling a small piece of entirety separately. That thing makes the work of the processors lighter. 

Same way acts the virtualized quantum computer. The system shares the work between many central processor units. 

When the entirety is shared between multiple processors. That makes them work lighter. Because every each of the processors is handling shorter code lines. That means the work is done faster than in the case. That the system would run the entire code through one processor. 


Sharing data between multiple processors are making the work easier and lighter for each processor


The model of virtual quantum computers.





Image 2. The model of virtual quantum computers.


1) Routing unit

2) Data-handling units


Arrows are the data flow in the computer


The routing computers share data from calculation units to other calculation units by using TCP/IP protocol. The system would share the data from the row-moving data segments to linear data segments. The would connect the code to the ends of the data frames and then the data is sending to the calculation units in segments. The calculation units are the regular binary computers. And the ability to share the data entirety with many computers at the same time will increase their power. 

The idea is similar to in the classroom the teacher orders students to copy the text. If all students are copying the entire text that thing would take a long time. But if there are 27 pages in the text. And every each of the student groups of 27 students is copying one page that process takes a shorter time. In that case, every student must copy only one page of the text. So sharing the work is making it lighter. 

Same way acts the virtualized quantum computer. The system shares the work between many central processor units. 

When the entirety is shared between multiple processors. That makes them work lighter. Because every each of the processors is handling shorter code lines. That means the work is done faster than in the case. That the system would run the entire code through one processor. 


And that makes the system faster and more effective than regular systems are. 


This thing can be a useful tool while waiting for real quantum computers. The thing is that the virtualized quantum computers are less sensitive to things like cosmic radiation. They are regular computers that are linked together in extraordinary ways. 

The internet makes it possible to link even quantum computers with robots. And that thing makes them more intelligent and more independent than ever before. The fact is that nobody even knows the power of modern computer systems. And even the regular binary computers can be faster than we expect. 


()https://scitechdaily.com/computer-science-how-quickly-do-algorithms-improve/


Image:()https://scitechdaily.com/computer-science-how-quickly-do-algorithms-improve/

()https://kimmoswritings.blogspot.com/

Comments

Popular posts from this blog

The new bendable sensor is like straight from the SciFi movies.

"Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com" (ScitechDaily, From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor) The new sensor is like the net eye of bugs. But it's more accurate than any natural net eye. The system is based on flexible polymer film and nanotubes. The nanotubes let light travel through it. And then the film at the bottom of those tubes transforms that light into the image. This ultra-accurate CCD camera can see ultimate details in advanced materials. The new system can see the smallest deviation in the materials.  And that thing makes it possible to improve safety on those layers. The ability to see ultra-small differences on surf

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

Humans should be at the center of AI development.

"Experts advocate for human-centered AI, urging the design of technology that supports and enriches human life, rather than forcing humans to adapt to it. A new book featuring fifty experts from over twelve countries and disciplines explores practical ways to implement human-centered AI, addressing risks and proposing solutions across various contexts." (ScitechDaily, 50 Global Experts Warn: We Must Stop Technology-Driven AI) The AI is the ultimate tool for handling things that behave is predictable. Things like planets' orbiting and other mechanical things that follow certain natural laws are easy things for the AI. The AI might feel human, it can have a certain accent. And that thing is not very hard to program.  It just requires the accent wordbook, and then AI can transform grammatically following text into text with a certain accent. Then the AI drives that data to the speech synthesizer. The accent mode follows the same rules as language translation programs. The ac